To which extend is the "neural code" a metric ?
نویسندگان
چکیده
Here is proposed a review of the different choices to structure spike trains, using deterministic metrics. Temporal constraints observed in biological or computational spike trains are first taken into account The relation with existing neural codes (rate coding, rank coding, phase coding, ..) is then discussed. To which extend the “neural code” contained in spike trains is related to a metric appears to be a key point, a generalization of the Victor-Purpura metric family being proposed for temporal constrained causal spike trains.
منابع مشابه
. bi o - ph ] 2 2 O ct 2 00 8 TO WHICH EXTEND IS THE “ NEURAL CODE ” A METRIC ?
Here is proposed a review of the different choices to structure spike trains, using deterministic metrics. Temporal constraints observed in biological or computational spike trains are first taken into account The relation with existing neural codes (rate coding, rank coding, phase coding, ..) is then discussed. To which extend the “neural code” contained in spike trains is related to a metric ...
متن کاملIdentification of Riemannian foliations on the tangent bundle via SODE structure
The geometry of a system of second order differential equations is the geometry of a semispray, which is a globally defined vector field on TM. The metrizability of a given semispray is of special importance. In this paper, the metric associated with the semispray S is applied in order to study some types of foliations on the tangent bundle which are compatible with SODE structure. Indeed, suff...
متن کاملNew fixed and periodic point results on cone metric spaces
In this paper, several fixed point theorems for T-contraction of two maps on cone metric spaces under normality condition are proved. Obtained results extend and generalize well-known comparable results in the literature.
متن کاملCommon Fixed Point Theorems for Weakly Compatible Mappings by (CLR) Property on Partial Metric Space
The purpose of this paper is to obtain the common fixed point results for two pair of weakly compatible mapping by using common (CLR) property in partial metric space. Also we extend the very recent results which are presented in [17, Muhammad Sarwar, Mian Bahadur Zada and Inci M. Erhan, Common Fixed Point Theorems of Integral type on Metric Spaces and application to system of functional equat...
متن کاملThe extension of quadrupled fixed point results in K-metric spaces
Recently, Rahimi et al. [Comp. Appl. Math. 2013, In press] defined the concept of quadrupled fied point in K-metric spaces and proved several quadrupled fixed point theorems for solid cones on K-metric spaces. In this paper some quadrupled fixed point results for T-contraction on K-metric spaces without normality condition are proved. Obtained results extend and generalize well-known comparable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0810.3990 شماره
صفحات -
تاریخ انتشار 2008